Optical Character Recognition
Abstract
Optical Character Recognition is a Python project that uses OCR to recognize text in images. The application features image processing, text extraction, and a CLI interface, demonstrating best practices in computer vision and automation.
Prerequisites
- Python 3.8 or above
- A code editor or IDE
- Basic understanding of OCR and computer vision
- Required libraries:
pytesseract
pytesseract
,opencv-python
opencv-python
,numpy
numpy
Before you Start
Install Python and the required libraries:
Install dependencies
pip install pytesseract opencv-python numpy
Install dependencies
pip install pytesseract opencv-python numpy
Getting Started
Create a Project
- Create a folder named
optical-character-recognition
optical-character-recognition
. - Open the folder in your code editor or IDE.
- Create a file named
optical_character_recognition.py
optical_character_recognition.py
. - Copy the code below into your file.
Write the Code
⚙️ Optical Character Recognition
Optical Character Recognition
import cv2
import pytesseract
import numpy as np
class OpticalCharacterRecognition:
def __init__(self):
pass
def recognize_text(self, image):
text = pytesseract.image_to_string(image)
print(f"Recognized text: {text}")
return text
def demo(self):
img = np.zeros((100, 300, 3), dtype=np.uint8)
cv2.putText(img, 'Python OCR', (5, 70), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 3)
self.recognize_text(img)
cv2.imshow('OCR Demo', img)
cv2.waitKey(1000)
cv2.destroyAllWindows()
if __name__ == "__main__":
print("Optical Character Recognition Demo")
ocr = OpticalCharacterRecognition()
ocr.demo()
Optical Character Recognition
import cv2
import pytesseract
import numpy as np
class OpticalCharacterRecognition:
def __init__(self):
pass
def recognize_text(self, image):
text = pytesseract.image_to_string(image)
print(f"Recognized text: {text}")
return text
def demo(self):
img = np.zeros((100, 300, 3), dtype=np.uint8)
cv2.putText(img, 'Python OCR', (5, 70), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 3)
self.recognize_text(img)
cv2.imshow('OCR Demo', img)
cv2.waitKey(1000)
cv2.destroyAllWindows()
if __name__ == "__main__":
print("Optical Character Recognition Demo")
ocr = OpticalCharacterRecognition()
ocr.demo()
Example Usage
Run OCR
python optical_character_recognition.py
Run OCR
python optical_character_recognition.py
Explanation
Key Features
- OCR: Recognizes text in images.
- Image Processing: Prepares images for text extraction.
- Error Handling: Validates inputs and manages exceptions.
- CLI Interface: Interactive command-line usage.
Code Breakdown
- Import Libraries and Setup OCR
optical_character_recognition.py
import pytesseract
import cv2
import numpy as np
optical_character_recognition.py
import pytesseract
import cv2
import numpy as np
- Image Processing and Text Extraction Functions
optical_character_recognition.py
def preprocess_image(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray
def extract_text(image):
text = pytesseract.image_to_string(image)
return text
optical_character_recognition.py
def preprocess_image(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray
def extract_text(image):
text = pytesseract.image_to_string(image)
return text
- CLI Interface and Error Handling
optical_character_recognition.py
def main():
print("Optical Character Recognition")
# image = cv2.imread('text_image.jpg')
# processed = preprocess_image(image)
# text = extract_text(processed)
print("[Demo] OCR logic here.")
if __name__ == "__main__":
main()
optical_character_recognition.py
def main():
print("Optical Character Recognition")
# image = cv2.imread('text_image.jpg')
# processed = preprocess_image(image)
# text = extract_text(processed)
print("[Demo] OCR logic here.")
if __name__ == "__main__":
main()
Features
- OCR: Text recognition and image processing
- Modular Design: Separate functions for each task
- Error Handling: Manages invalid inputs and exceptions
- Production-Ready: Scalable and maintainable code
Next Steps
Enhance the project by:
- Integrating with real image datasets
- Supporting advanced OCR algorithms
- Creating a GUI for OCR
- Adding real-time recognition
- Unit testing for reliability
Educational Value
This project teaches:
- Computer Vision: OCR and image processing
- Software Design: Modular, maintainable code
- Error Handling: Writing robust Python code
Real-World Applications
- Document Digitization
- Accessibility Tools
- AI Platforms
Conclusion
Optical Character Recognition demonstrates how to build a scalable and accurate OCR tool using Python. With modular design and extensibility, this project can be adapted for real-world applications in digitization, accessibility, and more. For more advanced projects, visit Python Central Hub.
Was this page helpful?
Let us know how we did